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Abstract. A direct evaluation of the lowest-order W K B  integral for three-dimensional 
quartic ( V ( r )  = r4) and quartic anharmonic ( V ( r )  = ; u 2 r 2  + hr4)  oscillators is carried out. 
The highly implicit relation for the energy defined by the W K R  quantisation condition is 
expressed in terms of complete elliptic integrals. An approximate non-perturbative 
inversion of the implicit relation provides explicit analytic expressions for the energy which 
reproduce known energy values quite accurately. This study is believed to be the first to give 
explicit energy expressions via the W K B  method for three-dimensional anharmonic oscil- 
lators. 

1. Introduction 

The study of one- and three-dimensional quantum anharmonic oscillators (AHO) is of 
considerable interest in view of the importance of these systems in quantum field theory 
and chemical physics. Very extensive literature is already available on the one- 
dimensional AHO (Bazley and Fox 1961, Bender and Wu 1969, Biswas et a1 1971, 
1973, Caswell 1979, Halliday and Suranyi 1980, Hioe and Montroll 1975, Hioe et a1 
1976, Loeffel et a1 1969, Banerjee 1978, Banerjee et al 1978, Richardson and 
Blankenbecler 1979, Blankenbecler er a1 1980, Killingbeck 1981, Mathews et a1 
1981a, b). In particular Mathews et af (1981a, b) have given a simple formula for the 
energy levels of one-dimensional AHO which works quite well. Hioe and Montroll 
(1975) and Hioe et a1 (1976) have discussed analytic approximations to the energy 
values k?,(A)  for large n and/or A in the case of one-dimensional oscillators charac- 
terised by the potential V ( x )  = w 2 x 2 + A ~ 2 c I .  More recently, Bender et a1 (1977) have 
computed WKB expressions for %,,(A) to high order, while Lakshmanan et a1 (1981) 
have worked out higher-order phase integrals for computing energies. 

In contrast to the one-dimensional case, relatively little information is available in 
the literature on the physically more interesting three-dimensional AHO. Bell er a1 
(1970a, b) have computed the first 50 or so eigenvalues by numerically diagonalising 
matrices of large dimensions. Mathews et a1 (1982) have presented a very simple 
analytic formula for the energies of quartic and quartic anharmonic oscillators which 
reproduces the known energy values quite well with a few parameters. Lakshmanan 
and Kaliappan (1980) have carried out a Bohr-Sommerfeld quantisation (with the 
radial quantum number n, replaced by n, + t)t. Their somewhat complicated looking 

f A factor of 2 is found to be missing in their implicit relation for the energy. 
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formula (which could be simplified further) is a highly implicit relation for 8 , ( A ) ,  and 
no attempt has been made by them to obtain even approximate explicit expressions 
for 8 , ( A ) .  Pasupathy and Singh (1981) have formulated an exact quantisation condition 
(generalising the WKB condition) for any central potential, but its applicability is limited 
to s waves only. Rather surprisingly, there does not seem to be available in the 
literature any formula for %‘,(A) obtained by evaluating the WKB integral directly for 
the three-dimensional AHO. 

In this paper we evaluate directly the lowest-order WKB integral for the anharmonic 
oscillator specified by V ( r )  = $w2r2+Ar4 in terms of complete elliptic integrals. (The 
pure quartic oscillator results follow trivially by setting w 2  = 0.) The WKB quantisation 
condition defines the allowed energies 8, ( A )  implicitly through the elliptic integrals. 
We demonstrate how an explicit analytic inversion can be carried out, and 8 , ( A )  
obtained, by expanding the elliptic integrals about values (of their arguments) which 
depend on n, and 1. It will be seen that our non-perturbative inversion procedure works 
very well and gives quite accurate results. 

The paper is organised as follows. In the next section the WKB integral for the 
potential V ( r )  = &oZr2+Ar4, is evaluated. In § 3 the inversion procedure is described 
first for the simple case of the pure quartic oscillator ( w z  = 0), and an accurate analytic 
formula for the energy from the WKB expression obtained. The formulae for the more 
involved case of w 2  # 0 are then presented. In the final section the results are discussed. 

2. Evaluation of the WKB integral 

For a particle of unit mass moving in the central potential 

(1) 

the WKB quantisation condition for allowed energy values 8 is (with h = 1) (Landau and 
Lifschitz 1977) 

1 2 2  V ( r ) = z w  r +Ar4 

where rl > 0 and r2 > 0 are the two classical turning points determined by 

1 2 2 4 8 - y w  r -Ar  - r = O  
2r (3 )  

and n, and I are non-negative integers. To solve (3) let us change variables: 

(4) 2 y = r .  

We then obtain 
2 

3 w 2 8 (I+y y +-y - - y + - -  - 0. 
2A A 2A 

The roots of this cubic equation (denoted a ,  6 ,  c )  are 

a = -w2/6A + 2J;A cos $4 
b = -w2 /6A +2JfAcos(fb +$T) 

c = - w 2 / 6 h  + 2 G   COS($^ + f ~ )  
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where 

and 

3 J G  [ ( I  + $ I 2 +  8w2/3A +w6/54A2] 
(8 +w4/12A)3/2 

cos#=-- 
4 

with $7r s # s 7r. It is not difficult to verify that the roots are real in the WKB regime and 
satisfy the relations 

a > b > O  (8a  1 
c < o .  ( 8 6 )  

Equation (2) can now be rewritten in terms of a, b, c as 

The integral on the RHS of this equation can be expressed in terms of complete elliptic 
integrals, and we obtain, after some algebra, 

( n , + ~ ) 7 r = ( ( g / J 2 A ) ( [ ~ 8 - ( l + ~ ) 2 / 2 c - ~ w 2 c ] K ( k ) - ~ w 2 ( a  - c ) E ( k )  

+;( l  +;)'(c-' - b - ' ) l l ( a 2 ,  k ) }  (9) 

where K,  E and ll are complete elliptic integrals of the first, second and third kinds 
respectively in the notation of Byrd and Friedman (1971). The quantities k, a 2  and g 
are defined by 

k 2 = ( a - b ) / ( a - C )  
2 a = c k 2 / b  

g = 2/ Jz. 
Wenote tha tO<k '< l  a n d a 2 < 0 .  

Equation (9) defines the energy 8 implicitly. Values of 8 for given A, w, n, and 1 can 
always be evaluated numerically. It is of great interest to investigate whether (9) can be 
inverted for the energy so that one would write down an explicit formula for 8 as a 
function of A ,  w,  n, and 1. Although exact inversion of (9) is impossible, it turns out to be 
quite possible (as will be shown) to carry out an approximate inversion, which not only 
reproduces the WKB energies surprisingly well, but also gives values quite close to those 
obtained by direct diagonalisation of the Hamiltonian. 

3. Analytic expression for 8 

3. I .  Pure quartic oscillator ( w z  = 0) 

To illustrate the inversion of equation (9) for 8, let us consider the case of a pure quartic 
oscillator. This means that w 2  = 0 in (1). Due to scaling one knows that for this case, 

%(A) = A 1/38(1). (11) 
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Hence we can set A = 1 without loss of generality. When o2 = 0, the RHS of (9) simplifies 
and equation (9) becomes 

(n,  + 1) T = (g /  J?){[$8 - ( I  + ;I2/2c ]K ( k  + ; ( I  + ;l2(c- ’ - b (9 ’ )  

M Seetharaman, Sekhar Raghavan and S S Vasan 

)IT}. 
Also A and cos q5 in equation ( 7 )  become 

A = Z  cos q5 = - &5( I + ; ) I /  8’12.  (7 ’ )  

Consider first the limit 

(1  + : l 2 / g 3 l 2  = s << 1 .  

It is easy to see that in this limit 

a = J&I - $8) b = JZS c = - J Z ( 1  +IS) 
k 2 = 4 ( l  -26)  a 2 =  - 1/28 g =  JF8 (13)  

~ ( k )  = K ( J ~ )  -;[E( J T )  - : K ( J ~ ) ] s  n(a2, k )  = TJG. 
Substituting these values in (9’) and simplifying, we obtain 

(n,  +;IT = 8 7 / 4 { 3 ~ ( J f )  - + T ( I  + : ) / 8 7 / 4 + [ $ ~ ( J T )  - ~ E ( J : ) ] ( I  + +)*/8”’}. 
Solving this quadratic equation (in g7I4), we readily get 

(14)  

where? 

n =2n,+1. (16)  

With regard to the above expression for 8, we may observe the following. First of all, it 
is t o  be noted that 

and then by Legendre‘s relation 

T E (  J i )  = $K (4;) + ___ - - 1.350 644. 
4 ~ ( J i )  

Then using (17)  the coefficient of the leading term can be written as 

Our leading term for 8 (namely C ( n  + ; ) ‘ I 3 )  coincides with that given by Quigg and 
Rosner (1979). They state that in the WKB regime the correct quantisation variable is 
neither n,  nor 1 but only 2n, + I ,  since the leading term contains n, and 1 only in the 
combination 2n, + 1. But when corrections to  the leading term are taken into account, 8 
exhibits a fine structure due to its dependence on I also, as seen from (1 5 ) .  The value of 

+ The relationship between n and n ,  is exactly the same as that obtained in the case of the isotropic harmonic 
oscillator. We note also that equation (16) shows that for a given n,  / can take only the values n ,  n - 2, , , , , 1 
or 0 depending on whether n is odd or even. 
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the constant C given in (18) is exactly the same as that in the one-dimensional case. In 
fact by setting I + = 0, and writing N = n + 1 = 2n,  + 1 = 1 , 3 , 5 ,  . . . , we recover the 
WKB formula for the one-dimensional quartic oscillator:. 

The energy values given by (1 5 )  are satisfactory for small 1. For instance, for n = 49, 
1 = 1, we find 8 = 256.833, which agrees quite well with the value 8 = 256.909 obtained 
by numerical solution of equation (9’). But as the value of 1 is increased, 8 calculated 
using (15) deviates more and more from the numerical solution of (9’).  For n = 100, 
1 = 40, (15) gives 8 = 602.16, whereas the numerical solution of (9’) is 8 = 637.17. Such 
large discrepancies are not surprising, since the basic condition for the validity of (1 5 )  
(6 << 1) is not satisfied for large values of 1 such as that in the second example above. 
I t  is therefore desirable to devise a better approximation to 8 than (15) that will agree 
well with numerical solutions to 8 for large values of I as well as small. 

To this end, let us suppose that 8 can be written as 

8 = 8(1(l + x )  IxI<< 1 (19) 

where is the leading approximation to 8 in (15): 

= C ( n  + 3 1 ~ ’ ~ .  (20) 

To obtain an explicit expression for x, we expand all quantities on the RHS of equation 
(9’) to order x and collect terms. Since the LHS is independent of x ,  we immediately get x 
on equating the two sides. Substituting (19) and (20) in (7’) we find 

- 
COS 4 = -2d3p (1 - : x )  

where 

To order x we can then solve for 4, 
4 = :r + o - ( l  tan O ) X  

with 

/j = s i n - ’  4P r? 45 
Using (22) we can evaluate a, b, c :  

and we obtain 

- -sin $0 
h = bo + b l x  = 24f8,)  sin $0  - Jf 8,) - X 

c = C O +  C ~ X  E -2J380 C O S ( ~ T  - i o )  -J580 

cos 0 

i-- COS(i7r +:e, 
X .  

cos 0 

These lead to the following values for k 2 ,  a 2  and g :  

a - b  cos($r + $01 J3 tan o 
+ 2 1 . x  k =-- - k i +  k:x = 

a - c   COS:^   COS so 
f This is not surprising in view of the well known result that I = 0 levels in a spherically symmetric potential are 
the same as the odd parity (odd N )  levels of the one-dimensional system with the same potential. 
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sin($* + $6) J5 tan e a2=-- C k 2  - = - -~ 
b sin $e 2 sin2 $ e x  

We now expand the elliptic integrals around k i  and a i ,  and obtain 

= no + n I x ( 2 8 ~ )  
where 

K O =  K ( k ; )  Eo = E ( k i )  no = n(ai, ko). 

Putting the above expressions in equation (9') and rearranging terms we obtain the 
following expression for x 

x = N / D  (29)  
with 

and 

In terms of p and 8, N and D are given by 
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and 

D =  [:( 1 -  1 JSp[sin(i.rr - fe) +cos f e / 4 ~ 0 ~  f e ]  
4 COS e C O S ( ~ T  - f e )  

)K,- 4 sin f e  costdr - fe) 3 8 CO& - f e )  

 COS fe  COS e 
3cL 2 3 JSp +-( 1 + 

For small c ~ ( p  << l ) ,  8"(1 + x )  obtained from (30) is identical to the 8 given by (15) .  
Our formula for finding 8 is defined by equations (29) and (31). We note that once 1 

and n are specified, N and D can be easily evaluated using standard tables of elliptic 
integrals. (For numerical values of elliptic integrals, see Belyakov et a1 (1965).) Over 
wide ranges of n and 1 values we have calculated 8 by the above method. We find that 
these values agree exceedingly well with the numerical solution of equation (9') 
obtained by the standard half-interval method (Carnahan et a f  1969). The results are 
presented in table 1, where gWKB stands for the values obtained by numerically solving 
(9!), and 8,,,,, for the very accurate values of Mathews et a1 (1981~) .  

Table 1. Comparison of &,(I +XI  with W K B  and exact energy eigenvalues for three- 
dimensional quartic oscillator. 

gWKB (as 
obtained by 
numerical 

8o(l + x )  solution of i&,,,, (Mathews 
n 1 (equation (29)) equation (9')) et a /  1 9 8 1 ~ )  

100 0 
50 

100 
50 0 

20 
50 

10 0 
4 

10 
0 0 

651.718 
629.105 
564.405 
263.144 
257.868 
229.066 

35.721 
34.960 
31.639 

2.327 

65 1.7 18 
629.190 
565.342 
263.744 
257.883 
229.433 

35.721 
34.963 
3 1.679 

2.327 

651.731 
629.194 
565.344 
263.751 
257.890 
229.437 

35.740 
34.980 
31.691 

2.394 

It must be noted that in equation (3 1 )  the elliptic integrals and their derivatives are 
to be computed at values which are explicitly dependent on n and 1. It is this feature 
that accounts for the success of the method. 

Special case: One-dimensional pure quartic oscillator. If we set ( 1  + f)' = 0 in (31), we 
find that N = 0 but D # 0. Therefore x = 0, and 

8 = 8" = C ( n  + 34'3 = ~ [ ( 2 n ,  + 1)  + :l4l3 

= ~ ( n ' + 4 ) ~ ' ~ .  

This is in agreement with known results (Hioe and Montroll 1975). 
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3.2. Anharmonic oscillator 

The above analysis can be extended in a straightforward manner to the case w 2  # 0. TO 
save space we shall give only the final expression for x,  just indicating the necessary 
modifications and omitting the details, For this case we should write 

8 = 80(1 + x )  IxI<< 1 
where 

go= C(n +1 4 / 3  113 
2) A . 

To order x the roots a,  6 ,  c given by ( 6 )  are 

( 3 2 )  

and 4 is defined by 

tan 4 = ( @ / U )  tan 8 
where 

6 8 J 8 0 ~ ~ + 9 A ( I + : ) ~ ]  
@ =FO[54A2(1+:)2+ 1 8 A 8 0 w ~ + w ~ ] '  

Once a, b, c are known, all other required quantities can be calculated (to order x).  
Proceeding as before we get 
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where KO, K ,  etc are defined as in (28). It is easily verified that in the pure quartic 
oscillator (U '=  0) limit, the above expressions reduce to those in (30). 

We have evaluated x for several n, 1 and A, and find that the energy go( 1 + x )  agrees 
very well with the values obtained by numerical solution of equation (9) for 8. The 
values given in table 2 for the case A = 0.5 are typical of the results obtained. 

Table 2. Comparison of Po(l +x) with WKB and exact energy eigenvalues for three- 
dimensional anharmonic oscillator with U' = 1 and A = 0.5. 

PwKB (as 
obtained by 
numerical 

if"(l+X) solution of if,,.,, (Mathews 
n 1 (equation (35)) equation (9)) er al 1 9 8 1 ~ )  

100 0 
50 

100 
50 0 

20 
50 

10 0 
4 

10 
0 0 

524.581 
507.043 
456.716 
213.973 
209.477 
187.340 
30.038 
29.492 
27.078 

2.267 

524.594 
507.065 
457.284 
2 13.986 
209.477 
187.526 
30.050 
29.497 
27.083 

2.275 

524.604 
507.068 
457.286 
2 13.991 
209.482 
187.530 
30.065 
29.510 
27.092 

2.324 

Special case. One-dimensional anharmonic oscillator. By setting ( I  + $I2 = 0 we can 
readily obtain the expression for x for the case of one-dimensional AHO. We note 
that in this limit the term containing the elliptic integral of the third kind drops out. 
Since our method involves expanding the elliptic integrals about values of the modulus 
k' which are dependent on n, our expression for 8 should be better than the ones 
given in the literature (which arise as a result of expanding around k 2  = which in 
turn corresponds to the limit n +CO).  

4. Discussion 

In  this work we have shown that it is straightforward to evaluate the (lowest-order) WKB 

integral directly for the three-dimensional quartic AHO. The WKB quantisation condi- 
tion requires that a highly complicated function of 8, 1 and A (occurring through 
arguments of elliptic integrals) be equal to ( n ,  + ;)T. We have demonstrated how it is 
possible to carry out an approximate non-perturbative inversion for expressing 8 as a 
function of n, 1 and A. The values of 8 obtained from the approximate inversion for the 
pure quartic and quartic anharmonic oscillators are given in tables 1 and 2. For 
checking the accuracy, we have also numerically solved (9) with U' = 0 and w 2  = 1 and 
these values are presented in tables as gWKB. It is easily checked that the two sets of 
values are quite close to each other thereby showing that our formula represents an 
accurate inversion for the energy values. We have in fact tested our formula over wide 
ranges of values of h(0 .1  to 501, n(10  to 500) and several values of 1 for each n and 
found it to be very satisfactory. The percentage error of the energy values calculated 
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from the formula as compared to numerical solution given in tables 1 and 2 is not more 
than 0 . 2 % .  As the lowest-order WKB quantisation itself is an approximation to exact 
energy levels of the AHO, one may be curious to compare gWKB with 8,,,,,. While 
Bell et a1 (1970b) have calculated a few energy levels exactly, a systematic evaluation 
of 8,,,,, to high accuracy (1 part in 10”) for arbitrary values of n and 1 has been 
recently carried out by Mathews et a1 (1981~) .  Their values are also given in tables 
1 and 2 as %‘,,,,,. A few observations on the numbers given in the tables are in order. 
We observe that for given n,  and A, 8 decreases as 1 increases. The difference 
8(1=0)-8(1)  is roughly proportional to 1(1+ 1) as already noted by Bell et al. In 
analogy with one-dimensional WKB results, one would expect that for fixed 1 the WKB 

expression would become more and more accurate as n, (representing the nodes in 
the radial wavefunction) increases. Surprisingly even for the smallest values of n, = 0 
(as happens whenever n = 2n ,  + 1 = I), the WKB expression yields quite good results. 
On the other hand, it is as n decreases that the WKB results start deviating from the 
exact ones. It is amusing that even for the ground state the WKB result is in error 
only by about 3%. Finally we should like to emphasise that in view of the quite 
satisfactory results given by our formula, it can be used as a starting point in various 
types of numerical schemes intended for very accurate evaluation of eigenvalues 
(particularly for large n, and A ) .  
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